NORMED Z-MODULES
نویسندگان
چکیده
منابع مشابه
Divisible Z-modules
In this article, we formalize the definition of divisible Z-module and its properties in the Mizar system [3]. We formally prove that any non-trivial divisible Z-modules are not finitely-generated. We introduce a divisible Z-module, equivalent to a vector space of a torsion-free Z-module with a coefficient ring Q. Z-modules are important for lattice problems, LLL (Lenstra, Lenstra and Lovász) b...
متن کاملMODULES FOR Z/p× Z/p
We investigate various aspects of the modular representation theory of Z/p × Z/p with particular focus on modules of constant Jordan type. The special modules we consider and the constructions we introduce not only reveal some of the structure of (Z/p× Z/p)-modules but also provide a guide to further study of the representation theory of finite group schemes.
متن کاملRecognizing Badly Presented Z-modules
Finitely generated Z-modules have canonical decompositions. When such modules are given in a finitely presented form there is a classical algorithm for computing a canonical decomposition. This is the algorithm for computing the Smith normal form of an integer matrix. We discuss algorithms for Smith normal form computation, and present practical algorithms which give excellent performance for m...
متن کاملExtreme Flatness of Normed Modules and Arveson-wittstock Type Theorems
We show in this paper that a certain class of normed modules over the algebra of all bounded operators on a Hilbert space possesses a homological property which is a kind of a functional-analytic version of the standard algebraic property of flatness. We mean the preservation, under projective tensor multiplication of modules, of the property of a given morphism to be isometric. As an applicati...
متن کاملPositively Convex Modules and Ordered Normed Linear Spaces
A positively convex module is a non-empty set closed under positively convex combinations but not necessarily a subset of a linear space. Positively convex modules are a natural generalization of positively convex subsets of linear spaces. Any positively convex module has a canonical semimetric and there is a universal positively affine mapping into a regularly ordered normed linear space and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2017
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v112i2.17